UNUSED ORIGINAL

			Thathscloud com
Please check the examination de	etails below before entering yo	our candidate information	C/OHO C
Candidate surname	Othe	r names	·com
Pearson Edexcel	Centre Number	Candidate Number	
Level 3 GCE	1 201		

Thursday 20 June 2019

Morning (Time: 1 hour 30 minutes)

Paper Reference **9FM0/3C**

Further Mathematics

Advanced

Paper 3C: Further Mechanics 1

You must have:

Mathematical Formulae and Statistical Tables (Green), calculator

Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

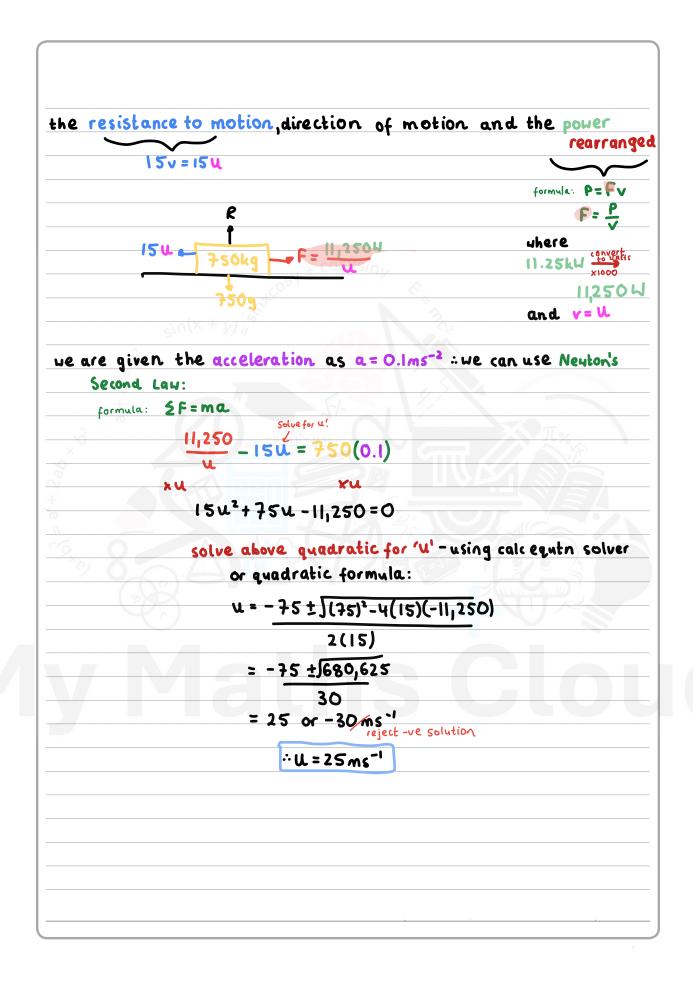
Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m \, s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice


- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Year 2 Work, energy, power - inclined planes, variable resistance, power A van of mass 750 kg is moving up a straight road inclined at an angle β to the horizontal, where $\sin \beta =$ At the instant when the speed of the van is $v \text{ m s}^{-1}$, the resistance to the motion of the van from non-gravitational forces is modelled as a force of magnitude λv newtons, where λ is a constant. When the engine of the van is working at a constant rate of 13 kW, the van moves up the road at a constant speed of 20 m s (a) Show that $\lambda = 15$ Later on, the van is moving along a straight horizontal road. At the instant when the speed of the van is ν m s⁻¹, the resistance to the motion of the van is modelled as a force of magnitude 15v newtons. When the engine of the van is working at a constant rate of 11.25 kW, the speed of the van is $U \text{ m s}^{-1}$ and the acceleration of the van is 0.1 m s⁻². (b) Find the value of U. (4)(Total for Question 1 is 8 marks) (a) Let's illustrate the above information on a detailed diagramlabel the resistance to motion, direction of motion and the power rearranged $\lambda v = \lambda 20$ formula: 4 NOTE: could're done this as a separate line of vorking but much more uhere 4509cosB efficient in the exam to P=13kW just add the power rearranged convert 13,000 straight onto our diagram turn the and v=20ms axis moving at constant speed' means the van is 750gsin B in equilibrium : forces right = forces left , 650 650 = 750gsinB + 20 2 Solving for this ! 750gcos B and given that sing = /21 =) $650 = \frac{250}{3}q + 20\lambda$ =) 20*x* = 300 -20 ÷20 **\(\)** = 15 (b) re-drawing our diagram given the new information:

Year 1 Work, energy and power - inclined planes, work-energy principle

- A small box is projected with speed 7 m s⁻¹ from a point O on a fixed rough inclined plane. The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$. The box moves up a line of greatest slope of the plane and comes to instantaneous rest at the point A. The coefficient of friction between the box and the plane is $\frac{1}{4}$. In a model of the motion the box is modelled as a particle.
 - (a) Show that, after coming to rest at A, the box immediately slides l ck down the plane.

(2)

The speed of the box at the instant when it returns to O is V m s⁻¹.

Given that $OA = \frac{25}{8}$ m,

(b) use the work-energy principle to find the value of V.

(4)

(c) Suggest one way in which the model can be refined to make it more ralistic.

(1)

(Total for (lestion 2 is 7 marks)

(a) let's illustrate the above diagrammatically-label the speed, the friction, the weight

we can tell from the above two diagrams that to show that the box immediately slides down the plane, we need to prove that the left force component exceeds the right i.e

mgsind) Fr

... using our formula for friction to evaluate RHS of abore:

reaction force

R(1): R = mgcosol

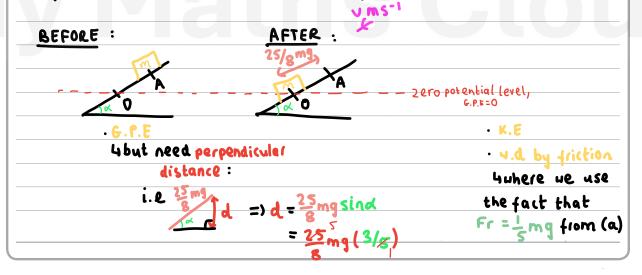
given that tand=3/4 so constructing the appropriate trig triangle - using

the 3,4,5 Pythag. triple:

$$\frac{5}{3}$$
 =) Sind = $\frac{3}{5}$
=) $\cos \alpha = \frac{4}{r}$

$$R = mg(4/5)$$
= 4/5 mg
=) Fr = $\frac{4}{5}$ mg($\frac{1}{4}$)
= $\frac{1}{5}$ mg

... evaluating LHS of the inequality:


$$\frac{\text{mgsind} = \text{mg}(3/s)}{= 3/s \text{mg}}$$

subbing back into our inequality:

3 mg) 1 mg which is true

: parcel must slide down the plane

(b) let's draw two diagrams to illustrate this situation - one for BEFORE the parcel travels from A to O and one for AFTER:

Year 2 Vector Momentum & Impulse - kinetic energy

A particle of mass 0.5 kg is moving with velocity (-i + 2j) m s⁻¹ when it receives an impulse I N s. As a result of the impulse, the kinetic energy of the particle increases by 12 J.

Given that I acts in the direction of (2i - j), find I.

(7)

(Total for Question 3 is 7 marks)

given the particle's mass, the velocity before and the direction of the impulse, we can use the vector form of the impulse-momentum principle to find the initial velocity well u = (2)

formula:
$$I = m(v - u)$$

Sub into above

 $k\binom{2}{-1} = 0.5 \left(\binom{q}{b} - \binom{-1}{2}\right)$

expand above and simplify:

... i component: ... b component:

$$\therefore v = \begin{pmatrix} 4k - 1 \\ -2k + 2 \end{pmatrix}$$

now that we've found an expression for 'v', we can apply this to the given information on kinetic energy (i.e that it increases by 12J)

subbing into our formula for change in Ek:

first need to work out the scalars of our velocities using Pythagoras!:

$$|u| = \int (-1)^2 + (2)^2 \qquad |v| = \int (4k-1)^2 + (2-2k)^2$$

$$= \int 5 \qquad = \int (4k-1)^3 + (2-2k)^2$$

now subbing into our AEk formula:

	Year 1 Elastic Collisions in 1D - principle of conservation of linear	
	momentum, elastic energy	`
4	Two smooth spheres, \underline{A} and \underline{B} , of the same radius, have masses $\underline{2m}$ and $\underline{3m}$ respectively. The spheres are at rest on a smooth horizontal plane. Sphere \underline{A} is projected towards \underline{B} with	
	speed u and collides directly with B . The coefficient of restitution between the spheres is e ,	
	where $e > \frac{2}{3}$	
	(a) Find, in terms of u and e ,	
	(i) the speed of A immediately after the collision,	
	(ii) the speed of B immediately after the collision.	
	(7) –	
	(b) Describe the direction of motion of A immediately after the collision, justifying your answer.	
	$+ \cos x \sin y$ (1)	
	Given that $e = \frac{3}{6}$	
	(c) find the total kinetic energy lost in the collision between A and B.	
	(4)_	
	(Total for Question 4 is 12 marks)	
(a) real	lising this is an elastic collisions in 10 question—hence	
	ating this diagrammatically	_
Itlastia	this diagramma occurry)
Ň		
	EFORE: AFTER:	
_\\		
9	$\frac{1}{2m} \left(\frac{3m}{3m} \right)^{8} \left(\frac{3m}{3m} \right)^{8}$	
^¢) (2m (3m) 2m (3m)	
	and following the usual procedure for these types of coll	isions:
	first, PCLM i.e momentum before = momentum after	
	formula: maunt me up= mav+ me ve	
	subbing into the above:	
	2m(4) + 3m(0) = 2m(x) + 3m(y)	
	expand above and cancel the m's:	
	=> 24 = 2x +3y -0	
	2,74 =2,131	
	next, NEL:	
	Speed of approach up-up	
	Speed of approach up-ue	
	subbing into above:	

$$= y - x$$

$$= y - x = eu - 0$$
(i) solving • and • simultaneously for $V_A = x$ - elim.y
$$3x^{2} - 0$$

$$-3x + 3y = 3eu$$

$$2x + 3y = 2u$$

$$-5x = 3eu - 2u$$

$$+ -5x = -\frac{u}{5}(3e - 2)$$

$$\therefore 3peed (no direction)$$
of $V_A = x = \frac{u}{5}(3e - 2)$
(ii) nou solving • and • simultaneously for $V_C = y$ (elim. x):
$$0 - 2x^{2}$$

$$2x + 3y = 2u$$

$$+ -2x + 2y = 2eu$$

$$5y = 2u + 2eu$$

$$7 = \frac{2u}{5}(1 + e)$$

$$\therefore V_C = y$$

$$1 = \frac{2u}{5}(1 + e)$$

$$\therefore V_C = y$$
(b) we see from part (a) that $V_C < 0 = 1$ motion of A has been reversed by the collision (e) $\frac{2}{3}$, so -ve is not cancelled out by another -ve in the brackets). A travels leftward
(c) we're looking at the kinetic energy lost for both spheres, so will use the formula for $E_K = \frac{1}{2}my^2$
... first calculating the K . Finitial:
... for A :
... for A :
... for C :
$$\frac{1}{2}(2m)(u)^2$$

$$\frac{1}{2}(3m)(0)^2$$

$$\therefore K$$
. E initial: mx^2

... next, calculating the K. Efinal where subbing in
$$e=\frac{5}{6}$$
 into V_A and V_B :

$$V_A = -\frac{u}{5} \left(\frac{3}{5}(\frac{5}{6}) - 2\right) \quad V_B = \frac{2u}{5}(1+\frac{5}{6})$$

$$= -\frac{u}{5} \left(\frac{1}{2}\right) = -\frac{u}{10} \qquad = \frac{11}{15} u$$

... K. Efinal for A:

... K. Efinal for B:

$$\frac{1}{2} \left(\frac{2m}{10}\right) \left(\frac{1}{10}\right) \qquad \frac{1}{2} \left(\frac{3m}{15}\right) \left(\frac{11}{15}u\right)^2$$

$$= \frac{mu^2}{100} \qquad = \frac{121}{150} mu^2$$

... kinetic

Quergy lost

$$= \frac{11}{60} mu^2$$

$$= \frac{11}{60} mu^2$$

5

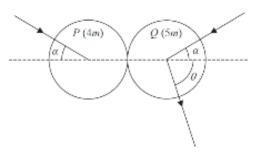


Figure 1

Two smooth uniform spheres, P and Q with equal radii, are moving on a smooth horizontal plane when they collide. Sphere P has mass 4m and sphere Q has mass 5m. Immediately before they collide, both spheres are moving with the same speed at an angle a, $0^{\circ} < a < 90^{\circ}$, to the line joining their centres. Immediately after they collide, Q moves at an angle θ to the line joining their centres, as shown in Figure 1. The coefficient of restitution between the spheres is e.

(a) Show that

$$\tan \theta = \frac{9 \tan a}{8e - 1}$$

(10)

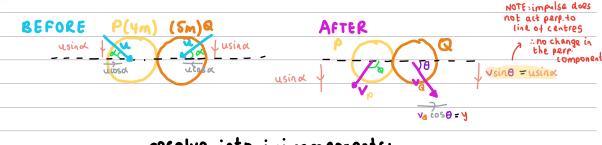
Given that immediately after the collision, Q moves in a direction that is perpendicular to the line of centres and that $a=45^{\circ}$

- (b) (i) find the value of e.
 - (ii) find the direction of motion of P immediately after the collision.

(4)

(c) Explain how you have used the fact that the two spheres have equal radii in your solution to part (a).

(1)


(Total for Question 5 is 15 marks)

to get an expression for tand, we have to find the parallel and perpendicular components of the Va

...first let's redraw Fig 1 with the resolved

velocities BEFORE and AFTER - let the same speed at which

both particles travel initially at = u

... resolve into i-j components:


```
=) y-x=2eu(os& -0
  solve 10 and 2 simultaneously for y (elim.x)
              2 ×4 +(1)
                  -4x+4y=8eucosx
                 + 4x+5y=-4c05d
                       9y = Beucosx - ucosx
                       factorising ucosal out and ÷9
 " looking at our very first 'after' diagram:
                          perpendicular
                  tan 0 =
                            parallel
                            usind
                 tan 0 =
                            ucosd (8e-1)
                ×9
                            qusind
                  =)tan0=
                            ucosa (8e-1)
                       and using the fact that sind = tand
                                   9tand
                         =)tan0 =
                                     8e-1
(b) (1) the fact that the particle Q moves in a direction that is
 perpendicular to the line of centres implies that the parallel comp.
  of V_0 = 0
               =) ucosa (8e-1) = 0
                     =) 8e-1=0
                     =) 8e = 1
```

```
(ii) for the direction of motion of Que need to find the angle 'p':
            ... perp. component:
            ·no Impulse .. no change
                => vosino = usind
           ... parallel component:
            4 treat as a standard direct collision in 10 question
              :. solve the o and o from (a) simultaneously -this
              time for 'x' (elim. 'y'):
            2×5-0 -5x+5y=10eucosa
                   -4x+5y=-4005d
                    -9x = 10eucosx+4cosx
                   factorise ucosa out and :-9 -- a
                    =) x = -4 cosx(10e+1)
                        but given that e=1/8, sub
                         into above:
                       x = -4 cosa (10(1/8)+1)
                          = - 1 ucos x
                      ·· looking at our first 'after' diagram:
                      = tan-1 ( usin &
                         = tan-1 (4tanx)
                         = tan-' (4tan (45°))
                            =tan-1(4)
                            = 76°

∴ P travels 76° to the line of centres

(c) impulse between spheres acts horizontally i.e along line of centres
```

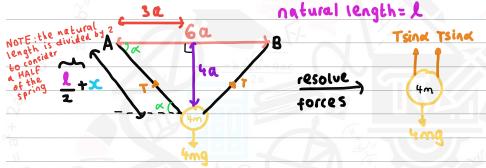
Year 2 Elastic Strings and Springs - equilibrium and dynamic problem, work-energy principle

Two fixed points, A and B, lie on a horizontal ceiling with AB = 6a. A light elastic string of modulus of elasticity that one end attached to A and the other end attached to B.

A particle P of mass 4m is attached to the midpoint of the string and P hangs in equilibrium at a distance 4a below AB.

(a) Show that the natural length of the string is 4a.

(5)


The particle P is now held at the midpoint of AB and released from rest.

(b) Find the maximum speed of P as it falls.

(6)

(Total for Question 6 is 11 marks)

(a)notice this is an EQUILIBRIUM PROBLEM involving strings and springs hence the most important thing is to draw a detailed diagram; let

cooking at the above string diagram, we can exploit triangle properties and find the value of the hypothenuse using PYTHAGORAS':

... from above (ue can exploit 3,4,5 Pythag.triple):

$$\begin{cases}
5a = \frac{3\alpha}{4\alpha}
\end{cases} \text{ from this, ue can derive:} \\
\sin \alpha = \frac{\alpha}{2} = \frac{4\alpha}{5\alpha} = \frac{4}{5}
\end{cases}$$

$$\cos \alpha = \frac{A}{2} = \frac{3\alpha}{5\alpha} = \frac{3}{5}$$

also we can exploit equilibrium to get the Tneeded to eventually get our l

4 consider the force diagram:

R(I): 2Tsind=4mg

and know that sind =4/5 (from trig triangle)-subbing this in:

$$2T (4/5) = 4mg$$

$$\div 8/5 \qquad \div 8/5$$

$$=) T = \frac{5}{8}(4mg)$$

$$=) T = \frac{5}{2}mg$$

and subbing this into our formula for elastic strings and springs (Hooke's

subbing into the above (but the info on HALF a string!)

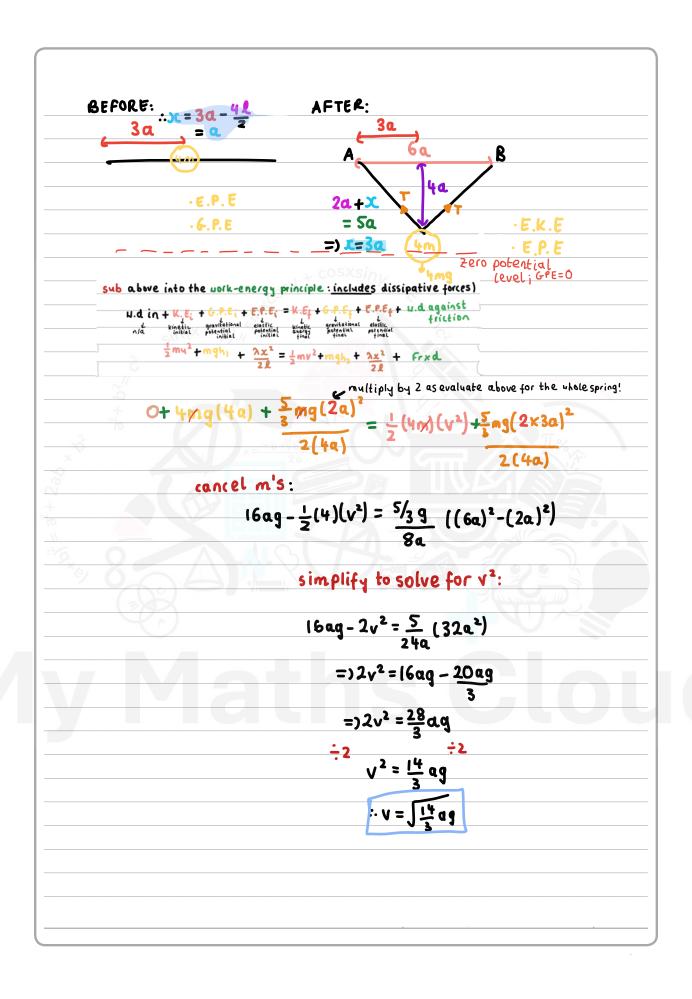
$$\frac{\sum_{mq} = \frac{\sum_{mq} (\sum_{n} - \frac{\ell}{2})}{3}$$

cancel mg's

$$\frac{5}{2} = \frac{5}{3} \left(5\alpha - \frac{\ell}{2} \right)$$

$$\frac{1}{2} \ell$$

$$\frac{5}{4}l = \frac{5}{3}(5a - \frac{1}{2})$$


expand and solve for L':

$$\frac{25}{3}\alpha = \frac{5}{4}l + \frac{5l}{6}$$

$$=) \frac{25}{12} \ell = \frac{25}{3} q$$

$$=) \ell = 4 q$$

(b) now we have a DYNAMICS problem -want to find the max.speed of the string-this only occurs when object is in equilibrium (part (a)) - drawing a detailed BFFORE and AFTER diagram (and label with appropriate energies:

Year 2 Oblique Impacts - successive collisions, oblique impacts with fixed surface

	7	A small ball is projected with speed 14 m s 1 from a point O on the ground. The ball is	
		projected at an angle α to the ground, where $\tan \alpha = \frac{3}{4}$. The ball bounces on the ground	
		for the first time at the point A_1 . The coefficient of restitution between the ball and	
		the ground is 2. The ball is modelled as a particle moving freely under gravity from	
		O to A_1 and between bounces. The ground is modelled as a smooth horizontal plane.	
		(a) Find the size of the angle between the direction of motion of the ball and the ground immediately after the ball bounces on the ground at A ₁	
	_	(A) Live lain hours in some extended and some hours and the first that the field in section for the	(4)
		(b) Explain how, in your calculation, you have used the fact that the ball is moving freely under gravity from O to 4.	(D)
		The bell becomes and a count fresh a count in seath a coint of	(1)
		The ball bounces on the ground for the second time at the point A_2	
		(c) Find the total time taken by the ball to travel from O to 1	(4)
			(4)
		The ball bounces on the ground for the n th time at the point A_n	
	2	Immediately after the ball bounces at A_n , the angle between the direction of motion of the ball and the ground is ϕ .	
	~"	(d) Find, in terms of n only, an expression for tan	
	4		(3)
	to	(e) Describe, according to the model, the subsequent motion of the ball after it has	
		bounced on the ground at A_2	(1)
×	_	Given instead that the coefficient of restitution between the ball and the ground is 0	() () () () () () () ()
29		(f) describe fully the motion of the ball from the instant when it is projected from O.	
		()) describe they are months of the bar from the fissiant when it is projected from ().	(2)
O U		(Total for Question 7 is 15 m	arks)
(a) first	le	t's illustrate our first elastic collision with t	he fixed
	•	agrammatically:	
	(2		
		COLLISION	
		(0.11310)	
		14sind Vsing 14cosa Vcos B	Ot
		4 see that, to get the angle B, we need to	
		find the parallel and perpendicular compe	onents of v
		parallel: no impulse :: no change:	
		· · · · · · · · · · · · · · · · · · ·	
			EL rearranged
		a pplies	
		4 see that, to get the angle β, we need to find the parallel and perpendicular composition parallel: no impulse no change: \(\text{VCOSB} = \frac{14\text{COSB}}{\text{COSB}} = \frac{14\text{COSB}}{\te	onents of v

considering vertical motion:	considering vertical motion:
(† *)	
u=-14sind	(++) u = -7 sind
v= 14sind	V = 7 Sind
a = - g	a = - q
<u> </u>	t ₂ = t ₂
formula: v= u+at yant to solve for	formula: v=u+at want to solve for to!
Subbing into above Juli	supplied tyto apove:
14sina =-14sina + (-9)(t,)	7sina = -7sina + (-g)(t2)
=1t,= 2(14sind)	=)t2= 2(7sina)
9	9
and we can deduce the value of	21/2-3/4
sind from tand=3/4-using 3-4-5 Pythag.triple	= 2(7×3/5)
	6 9
$\frac{3}{100} = \frac{3}{100} = \frac{3}{100}$ $\frac{3}{100} = \frac{3}{100} = \frac{3}{100}$ $\frac{3}{100} = \frac{3}{100} = \frac{3}{100}$	
4	
:.t,= 2(14(3/5))	
9	
= 12	
7	
++. = 12 . 6 = 19	8 . 2526
	- Or 4.3+5
WINIATI	TS L.IMI
(d) nou we're being asked to con	nsider a general n-bounces case -
•	: no Empulse =>no change
14005&	
perp.component: N	IEL rearranged applies
so 14sindx (1/2)	
	nd(1)
	2
= tan & =) tan & = 3/4	$(\frac{1}{2})^n = \frac{3}{4} = \frac{3}{2^{n+2}}$
=) tan a = 3/4	$(\frac{1}{2}) = \frac{4}{20} - 4 \times 2^{n} - 2^{n+2}$

th whose investing one digange or	(e) the ball continues to bounce with the same angle to the ground (f) after hitting the ground at A, the ball will move along the ground (with no rebound) at 14cosx=14(4/5)		
around (with an cohound) at			
ground (atti no resounce) as	=11.2m5 ⁻¹		
+ C	osxsin _y		
±051			
	3		
5111/2 / 1/1/			
<u> </u>			
3,"			
<u> </u>	1-21		
2 -h ± \(\frac{1}{2} - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	π_{\circ}		
3)9			
7 Matt			
7 Matt			

cosxsiny
sin(x + y) ii
4
$\frac{3}{2}$
(3)
VINATING GIOT
VIMALIAS GLOU
· · · · · · · · · · · · · · · · · · ·

5
sin(x + N) // 3>
51
+
$\times \frac{-6+9b-4ac}{2a}$
VITALIAS GLOU